If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2=195
We move all terms to the left:
2x^2-(195)=0
a = 2; b = 0; c = -195;
Δ = b2-4ac
Δ = 02-4·2·(-195)
Δ = 1560
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1560}=\sqrt{4*390}=\sqrt{4}*\sqrt{390}=2\sqrt{390}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{390}}{2*2}=\frac{0-2\sqrt{390}}{4} =-\frac{2\sqrt{390}}{4} =-\frac{\sqrt{390}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{390}}{2*2}=\frac{0+2\sqrt{390}}{4} =\frac{2\sqrt{390}}{4} =\frac{\sqrt{390}}{2} $
| 4c-24=-4c-24 | | 39x-4)+5=9x+1 | | (4z+9)(7-z)=0 | | -4+5(x+-1)=12x+2-7x | | (1-3x)^2=4 | | -5=x^2 | | 0=11x^2-2x | | .6x+28=79 | | 6(3n+1)=9(6n+3)+6 | | 5t+16=6+5t3 | | 8x÷3=32 | | 4=−0.8*n | | -5=x^-2 | | 8-4x-5-8x=6 | | 59=19^x | | 13(4c-1)-18=50c+13 | | 4x+15=3x+11 | | (4x+2)=(6x-8) | | (5+7)/x=24 | | 3x–2(2x-3)–3(3x+4)–5x=-5(4x-5)–16 | | 16-(2x-1)^2=0 | | 4x–2(3x+2)+7x=10(-x+12)+26 | | 1.5x+5.5=10 | | 125x-20=100-40x-4 | | 3/5=v-3/2 | | -2.2(x+1)=0.3(×-1.5) | | 1.5x=15.5 | | h-4(2h-9)=2h-18 | | x+x/3=180 | | 30=4-3h | | 4a+5=2-3.25a | | 3/7+7m/3=65/21 |